Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions.
نویسندگان
چکیده
Focusing on isolated macroscopic systems, described in terms of either a quantum mechanical or a classical model, our two key questions are how far does an initial ensemble (usually far from equilibrium and largely unknown in detail) evolve towards a stationary long-time behavior (equilibration) and how far is this steady state in agreement with the microcanonical ensemble as predicted by statistical mechanics (thermalization). A recently developed quantum mechanical treatment of the problem is briefly summarized, putting particular emphasis on the realistic modeling of experimental measurements and nonequilibrium initial conditions. Within this framework, equilibration can be proven under very weak assumptions about those measurements and initial conditions, while thermalization still requires quite strong additional hypotheses. An analogous approach within the framework of classical mechanics is developed and compared with the quantum case. In particular, the assumptions to guarantee classical equilibration are now rather strong, while thermalization then follows under relatively weak additional conditions.
منابع مشابه
On the foundation of equilibrium quantum statistical mechanics
We discuss the condition for the validity of equilibrium quantum statistical mechanics in the light of recent developments in the understanding of classical and quantum chaotic motion. In particular, the ergodicity parameter introduced in [1] is shown to provide the conditions under which quantum statistical distributions can be derived from the quantum dynamics of a classical ergodic Hamiltoni...
متن کاملBending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory
A trigonometric plate theory is assessed for the static bending analysis of plates resting on Winkler elastic foundation. The theory considers the effects of transverse shear and normal strains. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the traction free conditions at the top and bottom surfaces of the plate without using shea...
متن کاملObservation of prethermalization in long-range interacting spin chains
Although statistical mechanics describes thermal equilibrium states, these states may or may not emerge dynamically for a subsystem of an isolated quantum many-body system. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale, and instead relax to quasi-stationary prethermal states that can be described by statistical mechan...
متن کاملQuantum-enhanced protocols with mixed states using cold atoms in dipole traps
We discuss the use of cold atoms in dipole traps to demonstrate experimentally a particular class of protocols for computation and metrology based on mixed states. Modelling of the system shows that, for a specific class of problems (tracing, phase estimation), a quantum advantage can be achieved over classical algorithms for very realistic conditions and strong decoherence. We discuss the resu...
متن کاملStatistical-Realism versus Wave-Realism in the Foundations of Quantum Mechanics
Different realistic attitudes towards wavefunctions and quantum states are as old as quantum theory itself. Recently Pusey, Barret and Rudolph (PBR) on the one hand, and Auletta and Tarozzi (AT) on the other, have proposed new interesting arguments in favor of a broad realistic interpretation of quantum mechanics that can be considered the modern heir to some views held by the fathers of quantu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2008